Delete horizontal, vertical and angled lines from an image using Python to clear noise and read text with minimum errors

I was working on an algorithm to detect lines in a image. I found many solutions online, but none of them seem to work to my satisfaction. Thereafter, I decided to write an algorithm, which can work to my satisfaction. This algorithm can detect horizontal, vertical and angled lines.

Following is the pseudo code of the algorithm. The implementation is in Python and it uses third party code.


  1. pix_array = Convert the image into 2D pixel array 
  2. Mono chromate the pixel array by setting values between 0-200 as 0 (black) and greater than 200 as 255(white) as 
  3. image_width = length of pix_array[0]
  4. image_height = length of pix_array
  5. Loop through pix_array, i.e. 1 pixel high horizontal slice of image:
    1. h = x coordinate of current pixel
    2. k = y coordinate of current pixel
    3. choose a value of radius as r
    4. draw a circle taking h,k as center using equation (X-h)^2 + (Y-k)^2 = r^2
    5. derive values of X and Y and check if pix_arrY[X][Y] is black (0)
    6. if black add them to possible line coordinate list
  6. loop through coordinate list obtained in step 5.6:
    1. choose tolerance_level for judging a fuzzy line, if line is fuzzy it may miss some pixels
    2. compute slope using h,k,X,Y
    3. count number of colored pixel on line segment
    4. if count falls in the tolerance range, navigate the pixels on line using slope and tolerance_level to get the complete line
    5. add the line to valid line list using start and end pixels
  7. Loop through the list of valid lines:
    1. set the color of all coordinates falling on line segment to white(255)
The implementation of this algorithm in Python is below. The code contains a timer implementation to get the performance stats. Please let me know your suggestions on improvement at Github  (https://github.com/vbhavsingh/image_algorithams/blob/master/line_detection_removal.py)




import numpy as np
import cv2
import math
from datetime import datetime
from PIL import Image, ImageEnhance





def timeit(method):
    def timed(*args, **kw):
        ts = datetime.now()
        result = method(*args, **kw)
        te = datetime.now()
        if 'log_time' in kw:
            dt = te-ts
            ms = (dt.days * 24 * 60 * 60 + dt.seconds) * 1000 + dt.microseconds / 1000.0
            kw['log_time']['time_elapsed'] += ms
        else:
            print ('%r  %2.2f ms'  (method.__name__, (te - ts) * 1000))
        return result
    return timed


@timeit
def contains_pixel(new_pixel, lines_list,**kwargs):
    for line in lines_list:
        for pixel in line:
            if new_pixel[0] == pixel[0] and new_pixel[1] == pixel[1]:
                return True
    return False

def compute_slope (x1,x2,y1,y2):
    if x1-x2 == 0:
        return None
    return (y2-y1)/(x2-x1)

def compute_x_position_for_circle(h,k,r,y):
    eq = (r*r) - ((y-k)*(y-k))
    eq_sqrt = math.sqrt(eq)
    x_pos = int(eq_sqrt+h)
    return x_pos

@timeit
def get_line_coordinates(image_arr,h,k,r,black_shade=200,**kwargs):
    ''' (x-h)^2 + (y-k)^2 = r^2  '''
    image_height = len(image_arr)
    image_width = len(image_arr[0])
    coordinates =[]
    for i in range (k-r, k+r):
        if h+r > image_width or i<0 or i > image_height:
            continue
        x = compute_x_position_for_circle(h, k, r, i)
        if x >= image_width or i >= image_height:
            continue
        if image_arr[i][x] < black_shade:
            coordinates.append([x,i])
    return coordinates


def is_good_pixel(x, slope, intercept, image_array,black_shade=200):
    if slope is None:
        y = intercept
    else:
        y = int(intercept + (slope * x))
    if y > 0 and y <=len(image_array):
        if image_array[y][x] <= black_shade:
            return y
    return None




def line_detetction(color_map_array,image_arr,min_line_length_in_pixel=100,black_shade=200, pixel_error_tolerance=2):
    image_width = len(image_arr[0])
    image_height = len(image_arr)
    detected_lines = []

    time_taken_by_get_line_coordinates = {'time_elapsed':0}
    time_taken_by_contains_pixel = {'time_elapsed':0}

    x_hz = -1
    y_hz = -1

    total_pixels = sum(len(h_list) for h_list in colored_pixel_map)
    scanned_pixels = 0

    for h_slice in color_map_array:
        for pixel_coordinates in h_slice:
            x = pixel_coordinates[0]
            y = pixel_coordinates[1]
            scanned_pixels += 1
            i = (scanned_pixels / total_pixels) * 100
            print('\rdetection progress : ' + str(i),end="")
            '''skip horizontal pixels that are already accounted for'''
            if x_hz is not None and y_hz is not None and x <= x_hz and y == y_hz:
                continue

            possible_line_coordinates = get_line_coordinates(image_arr,x,y,min_line_length_in_pixel,black_shade,log_time=time_taken_by_get_line_coordinates)

            for coordinates in possible_line_coordinates:
                c_x = coordinates[0]
                c_y = coordinates[1]
                possible_line = []
                slope = compute_slope(x,c_x,y,c_y)
                previous_pointer = 0
                if slope is None:
                    previous_pointer = y
                    for scanner in range(y,image_height):
                        if image_arr[scanner][x] <= black_shade and scanner - previous_pointer -1 < pixel_error_tolerance:
                            possible_line.append([x,scanner])
                            previous_pointer = scanner
                        elif len(possible_line) >= min_line_length_in_pixel:
                            detected_lines.append(possible_line[:])
                            possible_line.clear()
                            break
                        else:
                            possible_line.clear()
                            break
                else:
                    intercept = c_y - (slope * c_x)
                    previous_pointer = x
                    for scanner in range(x , image_width):
                        y_of_x = is_good_pixel(scanner, slope, intercept,image_arr, black_shade)
                        x_hz = scanner
                        y_hz = y_of_x
                        if y_of_x is not None and scanner - previous_pointer -1 < pixel_error_tolerance:
                            possible_line.append([scanner, y_of_x])
                            previous_pointer = scanner
                        elif len(possible_line) >= min_line_length_in_pixel:
                            detected_lines.append(possible_line[:])
                            possible_line.clear()
                            break
                        else:
                            possible_line.clear()
                            break
    return detected_lines





def get_line_size_in_pixel_for_A4_image(image, line_size_in_mm):
    a4_width = 210
    image_width_in_pixel = image.width
    return ( image_width_in_pixel / a4_width ) *line_size_in_mm



def covert_pixels_array_to_image(pixel_array):
    return Image.fromarray(pixel_array)


def save_image_w_lines(iproc_obj):
    img_lines = iproc_obj.draw_lines(orig_img_as_background=True)
    img_lines_file = '2_1.png'
    cv2.imwrite(img_lines_file, img_lines)

def increase_contrast(image_name):
    image = Image.open(image_name)
    image = ImageEnhance.Contrast(image).enhance(5)
    image = ImageEnhance.Sharpness(image).enhance(2)
    return image

def image_to_array(image):
    im = image.convert('L')
    arr = np.fromiter(iter(im.getdata()), np.uint8)
    arr.resize(im.height, im.width)
    return arr

def fill_color_in_images_pixels(image_pixel_array, replcement_pixel_list, fill_color=255, return_image= False):
    for lines in replcement_pixel_list:
        for pixel in lines:
            image_pixel_array[pixel[1]][pixel[0]]=fill_color
    if return_image is True:
        return covert_pixels_array_to_image(image_pixel_array)
    return image_pixel_array


def detect_horizontal_line(horinatl_slice, min_line_length_in_pixel=10,pixel_error_tolearnce=3):
    if len(horinatl_slice) < min_line_length_in_pixel:
        return None
    anchor_pixel_pos = 0
    line_segments = []
    line = []
    for pixel_pos in horinatl_slice:
        if anchor_pixel_pos == 0:
            anchor_pixel_pos = pixel_pos[0] - 1
        if pixel_pos[0] - anchor_pixel_pos - 1 < pixel_error_tolearnce:
            line.append(pixel_pos)
        elif len(line) >= min_line_length_in_pixel:
            line_segments.append(line[:])
            line.clear()
        else:
            line.clear()
            line.append(pixel_pos)
        anchor_pixel_pos = pixel_pos[0]
    return line_segments if len(line_segments) > 0 else None



def detect_lines(colored_pixel_list, min_line_length_in_pixel=10, pixel_error_tolearnce=3):
    lines = []
    for h_slice in colored_pixel_list:
        horizontal_line = detect_horizontal_line(h_slice,min_line_length_in_pixel,pixel_error_tolearnce)
        if horizontal_line is not None:
            lines.extend(horizontal_line)
    return lines



def get_pixel_coordinate_map_for_staright_lines(image_pixel_array, black_shade=200):
    image_lines = []
    for h, h_slice in enumerate(image_pixel_array):
        line = []
        for v , pixel in enumerate(h_slice):
            if pixel < black_shade:
                line.append([v,h])
        if len(line) > 0:
            image_lines.append(line[:])
            line.clear()
    return image_lines


source_img = '2.png'
interim_img ='2_1.png'
final_img = '2_2.png'


data = image_to_array(increase_contrast(source_img))

colored_pixel_map = get_pixel_coordinate_map_for_staright_lines(data, black_shade = 200)
angled_lines = line_detetction(colored_pixel_map,data,min_line_length_in_pixel=30,black_shade=200,pixel_error_tolerance=5)


clean_img = fill_color_in_images_pixels(data,angled_lines,255,True)

clean_img.show()

Comments

Popular posts from this blog

Caused by: java.sql.SQLTimeoutException: ORA-01013: user requested cancel of current operation

pandas dataframe add missing date from range in a multi-dimensional structure with duplicate index